Comparing Graph Clusterings: Set Partition Measures vs. Graph-Aware Measures

نویسندگان

چکیده

In this paper, we propose a family of graph partition similarity measures that take the topology into account. These graph-aware are alternatives to using set not specifically designed for partitions. The two types measures, and shown have opposite behaviors with respect resolution issues provide complementary information necessary assess partitions similar.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experiments on Comparing Graph Clusterings

A promising approach to compare graph clusterings is based on using measurements for calculating the distance. Existing measures either use the structure of clusterings or quality–based aspects. Each approach suffers from critical drawbacks. We introduce a new approach combining both aspects and leading to better results for comparing graph clusterings. An experimental evaluation of existing an...

متن کامل

Structure-Aware Distance Measures for Comparing Clusterings in Graphs

Clustering in graphs aims to group vertices with similar patterns of connections. Applications include discovering communities and latent structures in graphs. Many algorithms have been proposed to find graph clusterings, but an open problem is the need for suitable comparison measures to quantitatively validate these algorithms, performing consensus clustering and to track evolving (graph) clu...

متن کامل

On the Variance-Type Graph Irregularity Measures

Bell's degree-variance Var$!{}_{B}$ for a graph $G$, with the degree sequence ($d_1,d_2,cdots,d_n$) and size $m$, is defined as$Var!_{B} (G)=frac{1}{n} sum _{i=1}^{n}left[d_{i} -frac{2m}{n}right]^{2}$.In this paper, a new version of the irregularity measures of variance-type, denoted by $Var_q$, is introduced and discussed. Based on a comparative study, it is demonstrated that the n...

متن کامل

Adaptation and Enhancement of Evaluation Measures to Overlapping Graph Clusterings

Quality measures are important to evaluate graph clustering algorithms by providing a means to assess the quality of a derived cluster structure. In this paper, we focus on overlapping graph structures, as many realworld networks have a structure of highly overlapping cohesive groups. We propose three methods to adapt existing crisp quality measures such that they can handle graph overlaps corr...

متن کامل

Comparing Graph Similarity Measures for Graphical Recognition

In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph represe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2021

ISSN: ['1939-3539', '2160-9292', '0162-8828']

DOI: https://doi.org/10.1109/tpami.2020.3009862